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Radiative-corrections for 
the MUSE experiment



MUon Scattering Experiment (MUSE) at PSI

Direct test of µp and ep interactions in a scattering experiment:


• higher precision than previously for µp,

• low-Q2 region for sensitivity to the proton charge radius,  

Q2 = 0.002 to 0.07 GeV2,

• with µ+,µ- and e+,e- to study possible 2𝜸 mechanisms,

• with µp and ep to have direct µ/e comparison.
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e− p→ e− p
e+ p→ e+ p
µ− p→ µ− p
µ+ p→ µ+ p

MUSE

The MUon Scattering Experiment at PSI (MUSE), MUSE Technical Design Report, arXiv:1709.09753 [physics.ins-det].
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Comparisons of, e.g., e to µ or of µ+ to µ- are 
insensitive to many of the systematics

The MUon Scattering Experiment at PSI (MUSE), MUSE Technical Design Report, arXiv:1709.09753 [physics.ins-det].

How different are the e/μ radii? 
(truncation error largely cancels)

Sensitivity to differences in 
extracted e/μ radii:


σ(re-rμ) ≈ 0.005 fm

CODATA shift: ≈ 0.034 fm

What is the radius? 
Absolute values of extracted 
e/μ radii (assuming no +/- 
difference seen):


σ(re), σ(rμ) ≈ 0.008 fm
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MUSE provides a high precision test of two-photon 
exchange for electrons and muons at low Q2
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Projected relative uncertainty in the ratio of μ+p to μ−p 
elastic cross sections. Estimated systematics: 0.2%. 

σe±p = |ℳ1γ |2 ± 2ℜ{ℳ†
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MUSE Technical Design Report, arXiv:1709.09753 [physics.ins-det]. 

TPE: largest theoretical uncertainty in low-energy proton 
structure. 

115 MeV/c 153 MeV/c 210 MeV/c



MUSE directly compares ep to μp cross-sections
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Projected relative statistical uncertainties in the ratio of ep to μp elastic cross sections.  
Estimated systematics ≈ 0.5%.

The relative statistical uncertainties in the form factors are half as large.

The MUon Scattering Experiment at PSI (MUSE), MUSE Technical Design Report, arXiv:1709.09753 [physics.ins-det]. 

< 1%
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MUSE is an unusual scattering experiment
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The MUon Scattering Experiment at PSI (MUSE),  
MUSE Technical Design Report, arXiv:1709.09753 [physics.ins-det].

Measure e± and µ± elastic scattering 
off a liquid hydrogen target.

Challenges


• Secondary beam: identifying and 
tracking beam particles to target,


• Low beam flux: large angle, non-
magnetic spectrometer,


• Background: e.g., Møller scattering 
and muon decay in flight.

20∘ < θ < 100∘

−45∘ < ϕ < 45∘

p = 115, 161, 210 MeV/c



The size of the radiative corrections depends on 
the detector properties and event selection
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Recoiling proton

remains unobserved

Scattered lepton

• angular acceptance

• particle momentum 

(magnitude not precisely measured)

Incident lepton

• beam momentum

• multiple scattering

• external Bremsstrahlung

Internal Bremsstrahlung

e.g., initial-state radiation

ℓ±p → ℓ′�±p′�γ

q1e.g.
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Examples of two experimental time-of-flight 
distributions
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The agreement of the 
measured and calculated πM1 
channel momenta is at the 
desired 0.2 – 0.3% level.
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MUSE tracking detectors
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Beam

Nov. 2017

GEM detectors (Hampton Univ.)

• Set of three GEM detectors built for & run in OLYMPUS.

• Measure trajectories into the target to reconstruct the 

scattering kinematics.

Straw-tube tracker 
(Hebrew University of Jerusalem + Temple)

• Two STT chambers with 5 vertical and 5 horizontal 

planes each (3000 straws total).

• The Straw Tube Tracker provides high-resolution and 

high-efficiency tracking of the scattered particles from 
the target. 

10 cm

60 cm

Nov. 2019
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Reconstruction of scattering angle
Position resolution: 
GEM 70 μm and STT 120 μm.


Full Geant4 simulation including 
detector material and target.


Scattering-angular resolution is 
dominated by multiple scattering 
and ≤ 20 mrad.
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Geant4

Simulation

σθ = 20 mrad



Detection of scattered lepton in SPS
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Fast and efficient scattered-particle scintillators (SPS)  
(University of South Carolina) provide event trigger and particle ID

• Front wall: 18 bars (6 cm x 3 cm x 120 cm), σt < 50 ps

• Rear wall: 28 bars (6 cm x 6 cm x 220 cm), σt < 60 ps
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Calorimeter
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Calorimeter in beamline downstream of BM

32 lead-glas crystals (4 cm x 4 cm x 30 cm)
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Beam line view from downstream side of MUSE 

Preliminary performance tests

Sum of light output of set of nine calorimeter 
blocks
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Calorimeter can be used to suppress initial-
state bremsstrahlung
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Event-Generator Requirements
• Include emission of hard radiated photon, beyond soft-photon approximation.


• Include the mass of lepton:


‣ Not using approximation .


‣ Accurate calculation of the event kinematics.


• Suitable for Monte Carlo simulations


• Models


‣ ESEPP (Gramolin et al.)


‣ Olympus / Darklight


‣ Heavy baryon chiral perturbation theory (F. Myhrer and collaborators)


‣ ELRADGEN (A. Afanasev et al.)


‣ …

−q2 ≫ m2
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Elastic Scattering of Electrons and Positrons on Protons  
(ESEPP)
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q

p p′

ℓ ℓ′

Γµ

γµ

q1 q1 q2 q2

virtual-photon corrections

first-order bremsstrahlung processfirst Born approximation

A.V. Gramolin et al., J. Phys. G: Nucl. Part. Phys. 41 (2014) 115001 (28pp) 

vacuum polarization lepton/proton vertex corrections TPE corrections

l±p ! l0±p0�



σ(ℓ±p) ∝ |ℳBorn |2 +

2ℜ[ℳ†
Born(ℳvac + ℳℓ

vert + ℳp
vert)]+

2ℜ[ℳ†
Born(ℳbox + ℳxbox)] +

ℳli
brems + ℳlf

brems
2

+ ℳpi
brems + ℳpf

brems
2
+

2ℜ[(ℳli
brems + ℳlf

brems)†(ℳpi
brems + ℳpf

brems)] + 𝒪(α4)

Lepton-charge dependence
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Charge-odd terms:

Cross section of charged lepton scattering on protons: 

Interference TPE term

Interference bremsstrahlung term

A.V. Gramolin et al., J. Phys. G: Nucl. Part. Phys. 41 (2014) 115001 (28pp) 

The interference-TPE term and the interference-bremsstrahlung terms change sign depending on the 
sign of the lepton’s charge. 



The ESEPP event generator
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• ESEPP generates 
unweighted events


• Two types of events: 
elastic (analytical 
integration) and 
inelastic (numerical 
integration) 

• First-order 
bremsstrahlung is 
taken into account in 
both cases
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Minimalistic MUSE simulation
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  Cross section in MUSE kinematicsep → e′�pγ
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Simulated downstream  photon 
distribution

ep → e′�pγ
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Radiative corrections for electron-scattering 
data in MUSE kinematics
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Radiative corrections for muon-scattering 
data in MUSE kinematics
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Uncertainties in the radiative corrections: ep
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σδ(e-) 115 MeV 210 MeV

20° 60° 100° 20° 60° 100°

p’min 0.05% 0.29% 0.56% 0.03% 0.23% 0.63%

p0 0.00% 0.00% 0.00% 0.00% 0.01% 0.00%

θ 0.13% 0.07% 0.05% 0.10% 0.14% 0.01%

Eγ 0.55% 0.57% 0.58% 0.35% 0.40% 0.38%

Total 0.57% 0.65% 0.81% 0.37% 0.48% 0.74%

Preliminary results



Uncertainties in the radiative corrections: μp
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σδ(μ-) 115 MeV 210 MeV

20° 60° 100° 20° 60° 100°

p’min 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

p0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

θ 0.06% 0.02% 0.04% 0.04% 0.03% 0.04%

Eγ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Total 0.06% 0.02% 0.04% 0.04% 0.03% 0.04%

Preliminary results



Cross-section asymmetries
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The interference-TPE term and the interference-bremsstrahlung terms change sign depending on the 
sign of the lepton’s charge. 
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More work needs to be done

• Improvement of the event sampling to more efficiently cover the full angular 
acceptance of the MUSE setup.


• Inclusion of the event generator in a full MUSE simulation.


• Understand the theoretical uncertainties, model dependence, and possible 
improvements in the calculations deep in the radiative tail.


• Separating the overall vs. the point-to-point radiative correction.


• Perform more dedicated calorimeter calibrations.

27



Summary
• MUSE is a high-precision experiment to measure the proton charge radius, study 

possible 2γ mechanisms, and have a direct µ/e comparison of the elastic cross-
sections.


• The MUSE setup has unique implications for the determination of radiative 
corrections:


‣ Without a magnetic spectrometer, MUSE does not measure the final-state lepton 
momentum precisely. 


‣ A dedicated downstream photon detector helps to suppress initial-state radiation 
effects.


• ESEPP simulations show uncertainties in radiative corrections to be lower than 1%.
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